High-dimensional statistics: Some progress and challenges ahead

Martin Wainwright

UC Berkeley
Departments of Statistics, and EECS
Winedale Workshop
October 2010

Joint work with: Alekh Agarwal, Arash Amini, Sahand Negahban Pradeep Ravikumar, Bin Yu.

Introduction

- classical asymptotic theory: sample size $n \to +\infty$ with number of parameters p fixed
- modern applications in science and engineering:
 - ▶ large-scale problems: both p and n may be large (possibly $p \gg n$)
 - \blacktriangleright need for high-dimensional theory that allows $(n,p)\to +\infty$

Introduction

- classical asymptotic theory: sample size $n \to +\infty$ with number of parameters p fixed
- modern applications in science and engineering:
 - ▶ large-scale problems: both p and n may be large (possibly $p \gg n$)
 - ▶ need for high-dimensional theory that allows $(n,p) \to +\infty$
- curses and blessings of high dimensionality
 - exponential explosions in computational complexity
 - statistical curses (sample complexity)
 - ► concentration of measure

Introduction

- classical asymptotic theory: sample size $n \to +\infty$ with number of parameters p fixed
- modern applications in science and engineering:
 - ▶ large-scale problems: both p and n may be large (possibly $p \gg n$)
 - ▶ need for high-dimensional theory that allows $(n,p) \to +\infty$
- curses and blessings of high dimensionality
 - exponential explosions in computational complexity
 - ► statistical curses (sample complexity)
 - ► concentration of measure
- need for embedded low-dimensional structures
 - sparse vectors (compressed sensing)
 - ► structured/patterned matrices
 - ▶ (near) low-rank matrices
 - ► Markov random fields
 - ▶ manifold structure

Loss functions and regularization

- Models: Indexed class of probability distributions $\{\mathbb{P}_{\theta} \mid \theta \in \Omega\}$
- Data: samples $Z_1^n = (x_i, y_i), i = 1, ..., n$ drawn from unknown \mathbb{P}_{θ^*}
- Estimation: Minimize loss function plus regularization term:

$$\widehat{\theta}$$
 $\in \arg\min_{\theta \in \Omega} \left\{ \mathcal{L}(\theta; Z_1^n) + \lambda_n r(\theta) \right\}.$
Estimate Loss function Regularizer

- Goal: For given error norm $\|\cdot\|_{\star}$
 - want upper bounds on $\|\widehat{\theta} \theta^*\|_{\star}$
 - ▶ non-asymptotic results allowing for $(n, p, s_1, s_2, ...) \rightarrow \infty$ where
 - $\star n \equiv \text{sample size}$
 - $\star p \equiv \text{dimension of parameter space } \Omega$
 - * $s_i \equiv \text{structural parameters (e.g., sparsity, rank, graph degree)}$

Example: Sparse linear regression

Set-up: noisy observations $y = X\theta^* + w$ with sparse θ^*

Estimator: Lasso program

$$\widehat{\theta} \in \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \theta)^2 + \lambda_n \sum_{i=1}^{p} |\theta_j|$$

Some past work: Tibshirani, 1996; Chen et al., 1998; Donoho/Xuo, 2001; Tropp, 2004; Fuchs, 2004; Efron et al., 2004; Meinshausen & Buhlmann, 2005; Candes & Tao, 2005; Donoho, 2005; Haupt & Nowak, 2005; Zhou & Yu, 2006; Zou, 2006; Koltchinskii, 2007; van de Geer, 2007; Bickel, Ritov & Tsybakov, 2008, Zhang, 2009

Example: Structured (inverse) covariance matrices

Set-up: Samples from random vector with sparse covariance Σ or sparse inverse covariance $\Theta^* \in \mathbb{R}^{p \times p}$.

Estimator (for inverse covariance)

$$\widehat{\Theta} \in \arg\min_{\Theta} \left\{ \left\langle \left\langle \frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{T}, \; \Theta \right\rangle \right\rangle - \log \det(\Theta) + \lambda_{n} \sum_{b \in B} \|\Theta_{b}\|_{F} \right\}$$

Some past work: Yuan & Lin, 2006; d'Asprémont et al., 2007; Bickel & Levina, 2007; El Karoui, 2007; d'Aspremont et al., 2007; Rothman et al., 2007; Zhou et al., 2007; Friedman et al., 2008; Lam & Fan, 2008; Ravikumar et al., 2008; Zhou, Cai & Huang, 2009

Example: Low-rank matrix approximation

Set-up: Matrix $\Theta^* \in \mathbb{R}^{p_1 \times p_2}$ with rank $r \ll \min\{p_1, p_2\}$.

Estimator:

$$\widehat{\Theta} \in \arg\min_{\Theta} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - \langle \langle X_i, \Theta \rangle \rangle)^2 + \lambda_n \sum_{j=1}^{\min\{p_1, p_2\}} \sigma_j(\Theta) \right\}$$

Some past work: Fazel, 2001; Srebro et al., 2004; Recht, Fazel & Parillo, 2007; Bach, 2008; Candes & Recht, 2008; Keshavan et al., 2009; Rohde & Tsybakov, 2009; Recht, 2009; Negahban & W., 2009

Example: Discrete Markov random fields

Set-up: Samples from discrete MRF(e.g., Ising or Potts model):

$$\mathbb{P}_{\theta}(x_1, \dots, x_p) = \frac{1}{Z(\theta)} \exp \left\{ \sum_{j \in V} \theta_j(x_j) + \sum_{(j,k) \in E} \theta_{jk}(x_j, x_k) \right\}.$$

Estimator: Given empirical marginal distributions $\{\widehat{\mu}_j, \widehat{\mu}_{jk}\}$:

$$\widehat{\Theta} \, \in \, \arg \min_{\Theta} \biggl\{ \sum_{s \in V} \mathbb{E}_{\widehat{\mu}_j} [\theta_j(x_j)] + \sum_{(j,k)} \mathbb{E}_{\widehat{\mu}_{jk}} [\theta_{jk}(x_j,x_k)] - \log Z(\theta) + \lambda_n \sum_{(j,k)} \|\theta_{jk}\|_F \biggr\}$$

Some past work: Spirtes et al., 2001; Abbeel et al., 2005; Csiszar & Telata, 2005;

Ravikumar et al, 2007; Schneidman et al., 2007; Santhanam & Wainwright, 2008; Sly et al., 2008; Montanari and Pereira, 2009

Example: Sparse principal components analysis

Set-up: Covariance matrix $\Sigma = ZZ^T + D$, where leading eigenspace Z has sparse columns.

Estimator:

$$\widehat{\Theta} \in \arg\min_{\Theta} \left\{ -\langle\!\langle \Theta, \ \widehat{\Sigma} \rangle\!\rangle + \lambda_n \sum_{(j,k)} |\Theta_{jk}| \right\}$$

Motivation and outline

- a large number of high-dimensional models and associated results on regularized estimators
- is there a core set of ideas that underlie these analyses?

Motivation and outline

- a large number of high-dimensional models and associated results on regularized estimators
- is there a core set of ideas that underlie these analyses?

This tutorial:

- Part I: Linear regression with sparsity constraints
 - ▶ Restricted nullspace and ℓ_1 -minimization
 - ► A random matrix theory result
 - Restricted eigenvalues and Lasso
- 2 Part II: A more general theory
 - Decomposability of regularizers
 - Restricted strong convexity of loss function
 - ► A main theorem
 - ► Some consequences

Noiseless linear models and basis pursuit

- under-determined linear system: unidentifiable without constraints
- say $\theta^* \in \mathbb{R}^p$ is sparse: supported on $S \subset \{1, 2, \dots, p\}$.

$$\underline{\ell_0\text{-optimization}}$$

$$\theta^* = \arg\min_{\theta \in \mathbb{R}^p} \|\theta\|_0$$
$$X\theta = y$$

Computationally intractable NP-hard

ℓ_1 -relaxation

$$\widehat{\theta} \in \arg\min_{\theta \in \mathbb{R}^p} \|\theta\|_1$$

$$X\theta = y$$

Linear program (easy to solve)
Basis pursuit relaxation

Restricted nullspace: necessary and sufficient

Definition

For a fixed $S \subset \{1, 2, ..., p\}$, the matrix $X \in \mathbb{R}^{n \times p}$ satisfies the restricted nullspace property w.r.t. S, or RN(S) for short, if

$$\underbrace{\left\{\Delta \in \mathbb{R}^p \mid X\Delta = 0\right\}}_{\mathbb{N}(X)} \cap \underbrace{\left\{\Delta \in \mathbb{R}^p \mid \|\Delta_{S^c}\|_1 \le \|\Delta_S\|_1\right\}}_{\mathbb{C}(S)} = \left\{0\right\}.$$

(Donoho & Xu, 2001; Feuer & Nemirovski, 2003; Cohen et al, 2009)

Restricted nullspace: necessary and sufficient

Definition

For a fixed $S \subset \{1, 2, ..., p\}$, the matrix $X \in \mathbb{R}^{n \times p}$ satisfies the restricted nullspace property w.r.t. S, or RN(S) for short, if

$$\underbrace{\left\{\Delta \in \mathbb{R}^p \mid X\Delta = 0\right\}}_{\mathbb{N}(X)} \cap \underbrace{\left\{\Delta \in \mathbb{R}^p \mid \|\Delta_{S^c}\|_1 \le \|\Delta_S\|_1\right\}}_{\mathbb{C}(S)} = \left\{0\right\}.$$

(Donoho & Xu, 2001; Feuer & Nemirovski, 2003; Cohen et al, 2009)

Proposition

Basis pursuit ℓ_1 -relaxation is exact for all S-sparse vectors $\iff X$ satisfies $\mathrm{RN}(S)$.

Restricted nullspace: necessary and sufficient

Definition

For a fixed $S \subset \{1, 2, ..., p\}$, the matrix $X \in \mathbb{R}^{n \times p}$ satisfies the restricted nullspace property w.r.t. S, or RN(S) for short, if

$$\underbrace{\left\{\Delta \in \mathbb{R}^p \mid X\Delta = 0\right\}}_{\mathbb{N}(X)} \cap \underbrace{\left\{\Delta \in \mathbb{R}^p \mid \|\Delta_{S^c}\|_1 \le \|\Delta_S\|_1\right\}}_{\mathbb{C}(S)} = \left\{0\right\}.$$

(Donoho & Xu, 2001; Feuer & Nemirovski, 2003; Cohen et al, 2009)

Proof (sufficiency):

- (1) Error vector $\widehat{\Delta} = \theta^* \widehat{\theta}$ satisfies $X\widehat{\Delta} = 0$, and hence $\widehat{\Delta} \in \mathbb{N}(X)$.
- (2) Show that $\widehat{\Delta} \in \mathbb{C}(S)$

Optimality of
$$\widehat{\theta}$$
: $\|\widehat{\theta}\|_1 \leq \|\theta^*\|_1 = \|\theta^*_S\|_1$.

Sparsity of
$$\theta^*$$
: $\|\widehat{\theta}\|_1 = \|\theta^* + \widehat{\Delta}\|_1 = \|\theta_S^* + \widehat{\Delta}_S\|_1 + \|\widehat{\Delta}_{S^c}\|_1$.

Triangle inequality: $\|\theta_S^* + \widehat{\Delta}_S\|_1 + \|\widehat{\Delta}_{S^c}\|_1 \ge \|\theta_S^*\|_1 - \|\widehat{\Delta}_S\|_1 + \|\widehat{\Delta}_{S^c}\|_1$.

(3) Hence, $\widehat{\Delta} \in \mathbb{N}(X) \cap \mathbb{C}(S)$, and $(RN) \Longrightarrow \widehat{\Delta} = 0$.

Illustration of restricted nullspace property

- consider $\theta^* = (0, 0, \theta_3^*)$, so that $S = \{3\}$.
- error vector $\widehat{\Delta} = \widehat{\theta} \theta^*$ belongs to the set

$$\mathbb{C}(S;1) := \{ (\Delta_1, \Delta_2, \Delta_3) \in \mathbb{R}^3 \mid |\Delta_1| + |\Delta_2| \le |\Delta_3| \}.$$

Some sufficient conditions

How to verify RN property for a given sparsity s?

■ Elementwise incoherence condition (Donoho & Xuo, 2001; Feuer & Nem., 2003)

$$\max_{j,k=1,\dots,p} \left| \frac{\langle x_j, \, x_k \rangle}{n} - \mathbb{I}\left[j=k\right] \right| \leq \frac{\delta_1}{s} \qquad n \qquad \boxed{\begin{bmatrix} x_1 & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_j & \vdots & \vdots & \vdots & \vdots \\ x_j & \vdots & \vdots & \vdots & \vdots \\ x_j & \vdots & \vdots & \vdots & \vdots \\ x_j & \vdots & \vdots & \vdots \\ x_j$$

2 Restricted isometry, or submatrix incoherence

(Candes & Tao, 2005)

$$\max_{U|\leq 2s} \left\| \frac{X_U^T X_U}{n} - I_{|U| \times |U|} \right\|_2 \leq \delta_{2s}.$$

Some sufficient conditions

How to verify RN property for a given sparsity s?

■ Elementwise incoherence condition (Donoho & Xuo, 2001; Feuer & Nem., 2003)

$$\max_{j,k=1,\dots,p} \left| \frac{\langle x_j, x_k \rangle}{n} - \mathbb{I}\left[j=k\right] \right| \leq \frac{\delta_1}{s} \qquad n \qquad \boxed{\begin{bmatrix} x_1 & x_j & x_k \\ x_1 & x_j & x_k \end{bmatrix}}$$

Matrices with i.i.d. sub-Gaussian entries: holds w.h.p. for $n = \Omega(s^2 \log p)$

2 Restricted isometry, or submatrix incoherence (Candes & Tao, 2005)

$$\max_{U|\leq 2s} \left\| \frac{X_U^T X_U}{n} - I_{|U| \times |U|} \right\|_2 \leq \delta_{2s}.$$

Matrices with i.i.d. sub-Gaussian entries: holds w.h.p. for $n = \Omega(s \log \frac{p}{s})$

Important:

Incoherence/RIP conditions imply RN, but are far from necessary.

Very easy to violate them.....

Form random design matrix

$$X = \underbrace{\begin{bmatrix} x_1 & x_2 & \dots & x_p \end{bmatrix}}_{p \text{ columns}} = \underbrace{\begin{bmatrix} X_1^T \\ X_2^T \\ \vdots \\ X_n^T \end{bmatrix}}_{n \text{ rows}} \in \mathbb{R}^{n \times p}, \quad \text{each row } X_i \sim N(0, \Sigma), \text{ i.i.d.}$$

Example: For some $\mu \in (0,1)$, consider the covariance matrix

$$\Sigma = (1 - \mu)I_{p \times p} + \mu \mathbf{1} \mathbf{1}^T.$$

Form random design matrix

$$X = \underbrace{\begin{bmatrix} x_1 & x_2 & \dots & x_p \end{bmatrix}}_{p \text{ columns}} = \underbrace{\begin{bmatrix} X_1^T \\ X_2^T \\ \vdots \\ X_n^T \end{bmatrix}}_{n \text{ rows}} \in \mathbb{R}^{n \times p}, \quad \text{each row } X_i \sim N(0, \Sigma), \text{ i.i.d.}$$

Example: For some $\mu \in (0,1)$, consider the covariance matrix

$$\Sigma = (1 - \mu)I_{p \times p} + \mu \mathbf{1} \mathbf{1}^T.$$

• Elementwise incoherence violated: for any $j \neq k$

$$\mathbb{P}\left[\frac{\langle x_j, x_k \rangle}{n} \ge \mu - \epsilon\right] \ge 1 - c_1 \exp(-c_2 n \epsilon^2).$$

Form random design matrix

$$X = \underbrace{\begin{bmatrix} x_1 & x_2 & \dots & x_p \end{bmatrix}}_{p \text{ columns}} = \underbrace{\begin{bmatrix} X_1^T \\ X_2^T \\ \vdots \\ X_n^T \end{bmatrix}}_{n \text{ rows}} \in \mathbb{R}^{n \times p}, \quad \text{each row } X_i \sim N(0, \Sigma), \text{ i.i.d.}$$

Example: For some $\mu \in (0,1)$, consider the covariance matrix

$$\Sigma = (1 - \mu)I_{n \times n} + \mu \mathbf{1} \mathbf{1}^T.$$

• Elementwise incoherence violated: for any $j \neq k$

$$\mathbb{P}\left[\frac{\langle x_j, x_k \rangle}{n} \ge \mu - \epsilon\right] \ge 1 - c_1 \exp(-c_2 n \epsilon^2).$$

• RIP constants tend to infinity as (n, |S|) increases:

$$\mathbb{P}\left[\left\|\frac{X_S^T X_S}{n} - I_{s \times s}\right\|_2 \ge \mu (s - 1) - 1 - \epsilon\right] \ge 1 - c_1 \exp(-c_2 n \epsilon^2).$$

Direct result for restricted nullspace/eigenvalues

Theorem (Raskutti, W., & Yu, 2009)

Consider a random design $X \in \mathbb{R}^{n \times p}$ with each row $X_i \sim N(0, \Sigma)$ i.i.d., and define $\kappa(\Sigma) = \max_{j=1,2,...p} \Sigma_{jj}$. Then for universal constants c_1, c_2 ,

$$\frac{\|X\theta\|_2}{\sqrt{n}} \ge \frac{1}{2} \|\Sigma^{1/2}\theta\|_2 - 9\kappa(\Sigma) \sqrt{\frac{\log p}{n}} \|\theta\|_1 \qquad \text{for all } \theta \in \mathbb{R}^p$$

with probability greater than $1 - c_1 \exp(-c_2 n)$.

Direct result for restricted nullspace/eigenvalues

Theorem (Raskutti, W., & Yu, 2009)

Consider a random design $X \in \mathbb{R}^{n \times p}$ with each row $X_i \sim N(0, \Sigma)$ i.i.d., and define $\kappa(\Sigma) = \max_{j=1,2,...p} \Sigma_{jj}$. Then for universal constants c_1, c_2 ,

$$\frac{\|X\theta\|_2}{\sqrt{n}} \ge \frac{1}{2} \|\Sigma^{1/2}\theta\|_2 - 9\kappa(\Sigma) \sqrt{\frac{\log p}{n}} \|\theta\|_1 \qquad \text{for all } \theta \in \mathbb{R}^p$$

with probability greater than $1 - c_1 \exp(-c_2 n)$.

- much less restrictive than incoherence/RIP conditions
- many interesting matrix families are covered
 - Toeplitz dependency
 - constant μ -correlation (previous example)
 - ightharpoonup covariance matrix Σ can even be degenerate
 - extensions to sub-Gaussian matrices

(Rudelson & Zhou, 2012)

• related results hold for generalized linear models

Easy verification of restricted nullspace

• for any $\Delta \in \mathbb{C}(S)$, we have

$$\|\Delta\|_1 = \|\Delta_S\|_1 + \|\Delta_{S^c}\|_1 \le 2\|\Delta_S\| \le 2\sqrt{s} \|\Delta\|_2$$

• applying previous result:

$$\frac{\|X\Delta\|_2}{\sqrt{n}} \ge \underbrace{\left\{\lambda_{min}(\sqrt{\Sigma}) - 18\kappa(\Sigma)\sqrt{\frac{s\log p}{n}}\right\}}_{\gamma(\Sigma)} \|\Delta\|_2.$$

Easy verification of restricted nullspace

• for any $\Delta \in \mathbb{C}(S)$, we have

$$\|\Delta\|_1 = \|\Delta_S\|_1 + \|\Delta_{S^c}\|_1 \le 2\|\Delta_S\| \le 2\sqrt{s} \|\Delta\|_2$$

• applying previous result:

$$\frac{\|X\Delta\|_2}{\sqrt{n}} \ge \underbrace{\left\{\lambda_{min}(\sqrt{\Sigma}) - 18\kappa(\Sigma)\sqrt{\frac{s\log p}{n}}\right\}}_{\gamma(\Sigma)} \|\Delta\|_2.$$

• have actually proven much more than restricted nullspace....

Easy verification of restricted nullspace

• for any $\Delta \in \mathbb{C}(S)$, we have

$$\|\Delta\|_1 = \|\Delta_S\|_1 + \|\Delta_{S^c}\|_1 \le 2\|\Delta_S\| \le 2\sqrt{s} \|\Delta\|_2$$

• applying previous result:

$$\frac{\|X\Delta\|_2}{\sqrt{n}} \ge \underbrace{\left\{\lambda_{min}(\sqrt{\Sigma}) - 18\kappa(\Sigma)\sqrt{\frac{s\log p}{n}}\right\}}_{\gamma(\Sigma)} \|\Delta\|_2.$$

• have actually proven much more than restricted nullspace....

Definition

A design matrix $X \in \mathbb{R}^{n \times p}$ satisfies the restricted eigenvalue (RE) condition over S (denote RE(S)) with parameters $\alpha \geq 1$ and $\gamma > 0$ if

$$\frac{\|X\Delta\|_2}{\sqrt{n}} \geq \frac{\gamma}{N} \|\Delta\|_2 \quad \text{for all } \Delta \in \mathbb{R}^p \text{ such that } \|\Delta_{S^c}\|_1 \leq \frac{\alpha}{N} \|\Delta_S\|_1.$$

(van de Geer, 2007; Bickel, Ritov & Tsybakov, 2008)

Lasso and restricted eigenvalues

Turning to noisy observations...

Estimator: Lasso program

$$\widehat{\theta}_{\lambda_n} \in \arg\min_{\theta \in \mathbb{R}^p} \left\{ \frac{1}{2n} \|y - X\theta\|_2^2 + \lambda_n \|\theta\|_1 \right\}.$$

Goal: Obtain bounds on $\|\widehat{\theta}_{\lambda_n} - \theta^*\|_2$ that hold with high probability.

Let's analyze constrained version:

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{2n} \|y - X\theta\|_2^2 \quad \text{such that } \|\theta\|_1 \le R = \|\theta^*\|_1.$$

Let's analyze constrained version:

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{2n} \|y - X\theta\|_2^2 \quad \text{such that } \|\theta\|_1 \le R = \|\theta^*\|_1.$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^* :

$$\frac{1}{2n} \|y - X\widehat{\theta}\|_2^2 \le \frac{1}{2n} \|y - X\theta^*\|_2^2.$$

Let's analyze constrained version:

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{2n} \|y - X\theta\|_2^2 \quad \text{such that } \|\theta\|_1 \le R = \|\theta^*\|_1.$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^* :

$$\frac{1}{2n} \|y - X\widehat{\theta}\|_2^2 \le \frac{1}{2n} \|y - X\theta^*\|_2^2.$$

(2) Derive a basic inequality: re-arranging in terms of $\widehat{\Delta} = \widehat{\theta} - \theta^*$:

$$\frac{1}{n} \|X\widehat{\Delta}\|_2^2 \leq \frac{2}{n} \langle \widehat{\Delta}, X^T w \rangle.$$

Let's analyze constrained version:

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{2n} \|y - X\theta\|_2^2 \quad \text{such that } \|\theta\|_1 \le R = \|\theta^*\|_1.$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^* :

$$\frac{1}{2n} \|y - X\widehat{\theta}\|_2^2 \le \frac{1}{2n} \|y - X\theta^*\|_2^2.$$

(2) Derive a basic inequality: re-arranging in terms of $\widehat{\Delta} = \widehat{\theta} - \theta^*$:

$$\frac{1}{n} \|X\widehat{\Delta}\|_2^2 \leq \frac{2}{n} \langle \widehat{\Delta}, X^T w \rangle.$$

(3) Restricted eigenvalue for LHS; Hölder's inequality for RHS

$$\gamma \|\widehat{\Delta}\|_2^2 \leq \frac{1}{n} \|X\widehat{\Delta}\|_2^2 \leq \frac{2}{n} \langle \widehat{\Delta}, X^T w \rangle \leq 2 \|\widehat{\Delta}\|_1 \left\| \frac{X^T w}{n} \right\|_{\infty}.$$

Let's analyze constrained version:

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{2n} \|y - X\theta\|_2^2 \quad \text{such that } \|\theta\|_1 \le R = \|\theta^*\|_1.$$

(1) By optimality of $\hat{\theta}$ and feasibility of θ^* :

$$\frac{1}{2n} \|y - X\widehat{\theta}\|_2^2 \le \frac{1}{2n} \|y - X\theta^*\|_2^2.$$

(2) Derive a basic inequality: re-arranging in terms of $\widehat{\Delta} = \widehat{\theta} - \theta^*$:

$$\frac{1}{n} \|X\widehat{\Delta}\|_2^2 \le \frac{2}{n} \langle \widehat{\Delta}, X^T w \rangle.$$

(3) Restricted eigenvalue for LHS; Hölder's inequality for RHS

$$\gamma \|\widehat{\Delta}\|_2^2 \leq \frac{1}{n} \|X\widehat{\Delta}\|_2^2 \leq \frac{2}{n} \langle \widehat{\Delta}, X^T w \rangle \leq 2 \|\widehat{\Delta}\|_1 \left\| \frac{X^T w}{n} \right\|_{\infty}.$$

(4) As before, $\widehat{\Delta} \in \mathbb{C}(S)$, so that $\|\widehat{\Delta}\|_1 \leq 2\sqrt{s}\|\widehat{\Delta}\|_2$, and hence $\|\widehat{\Delta}\|_2 \leq \frac{4}{\gamma} \sqrt{s} \|\frac{X^T w}{n}\|_{\infty}$.

Lasso error bounds for different models

Proposition

Suppose that

- vector θ^* has support S, with cardinality s, and
- design matrix X satisfies RE(S) with parameter $\gamma > 0$.

For constrained Lasso with $R = \|\theta^*\|_1$ or regularized Lasso with $\lambda_n = 2\|X^T w/n\|_{\infty}$, any optimal solution $\widehat{\theta}$ satisfies the bound

$$\|\widehat{\theta} - \theta^*\|_2 \le \frac{4\sqrt{s}}{\gamma} \|\frac{X^T w}{n}\|_{\infty}.$$

Lasso error bounds for different models

Proposition

Suppose that

- vector θ^* has support S, with cardinality s, and
- design matrix X satisfies RE(S) with parameter $\gamma > 0$.

For constrained Lasso with $R = \|\theta^*\|_1$ or regularized Lasso with $\lambda_n = 2\|X^T w/n\|_{\infty}$, any optimal solution $\widehat{\theta}$ satisfies the bound

$$\|\widehat{\theta} - \theta^*\|_2 \le \frac{4\sqrt{s}}{\gamma} \|\frac{X^T w}{n}\|_{\infty}.$$

- this is a deterministic result on the set of optimizers
- various corollaries for specific statistical models

Lasso error bounds for different models

Proposition

Suppose that

- vector θ^* has support S, with cardinality s, and
- design matrix X satisfies RE(S) with parameter $\gamma > 0$.

For constrained Lasso with $R = \|\theta^*\|_1$ or regularized Lasso with $\lambda_n = 2\|X^T w/n\|_{\infty}$, any optimal solution $\widehat{\theta}$ satisfies the bound

$$\|\widehat{\theta} - \theta^*\|_2 \le \frac{4\sqrt{s}}{\gamma} \|\frac{X^T w}{n}\|_{\infty}.$$

- this is a deterministic result on the set of optimizers
- various corollaries for specific statistical models
 - ► Compressed sensing: $X_{ij} \sim N(0,1)$ and bounded noise $||w||_2 \leq \sigma \sqrt{n}$
 - ▶ Deterministic design: X with bounded columns and $w_i \sim N(0, \sigma^2)$

$$\|\frac{X^T w}{n}\|_{\infty} \leq \sqrt{\frac{3\sigma^2 \log p}{n}} \quad \text{w.h.p.} \implies \|\widehat{\theta} - \theta^*\|_2 \leq \frac{4\sigma}{\gamma(\mathcal{L})} \sqrt{\frac{s \log p}{n}}.$$

Recap: Thus far.....

- Derived error bounds for basis pursuit and Lasso (ℓ_1 -relaxation)
- Seen importance of restricted nullspace and restricted eigenvalues

Recap: Thus far.....

- Derived error bounds for basis pursuit and Lasso (ℓ_1 -relaxation)
- Seen importance of restricted nullspace and restricted eigenvalues

The big picture:

Lots of other estimators with same basic form:

$$\underbrace{\widehat{\theta}_{\lambda_n}}_{\theta \in \Omega} \in \arg\min_{\theta \in \Omega} \Big\{ \underbrace{\mathcal{L}(\theta; Z_1^n)}_{\text{Loss function}} + \lambda_n \underbrace{r(\theta)}_{\text{Regularizer}} \Big\}.$$

Recap: Thus far.....

- Derived error bounds for basis pursuit and Lasso (ℓ_1 -relaxation)
- Seen importance of restricted nullspace and restricted eigenvalues

The big picture:

Lots of other estimators with same basic form:

$$\underbrace{\widehat{\theta}_{\lambda_n}}_{\theta \in \Omega} \in \arg\min_{\theta \in \Omega} \Big\{ \underbrace{\mathcal{L}(\theta; Z_1^n)}_{\text{Loss function}} + \lambda_n \underbrace{r(\theta)}_{\text{Regularizer}} \Big\}.$$

Past years have witnessed an explosion of results (compressed sensing, covariance estimation, block-sparsity, graphical models, matrix completion...)

Question: Is there a common set of underlying principles?

Recap: Thus far.....

- Derived error bounds for basis pursuit and Lasso (ℓ_1 -relaxation)
- Seen importance of restricted nullspace and restricted eigenvalues

The big picture:

Lots of other estimators with same basic form:

$$\underbrace{\widehat{\theta}_{\lambda_n}}_{\theta \in \Omega} \in \arg\min_{\theta \in \Omega} \Big\{ \underbrace{\mathcal{L}(\theta; Z_1^n)}_{\text{Loss function}} + \lambda_n \underbrace{r(\theta)}_{\text{Regularizer}} \Big\}.$$

Question: Is there a common set of underlying principles?

Answer: Yes, two essential ingredients.

- Decomposability of the regularizer
- 2 Restricted strong convexity of the objective function

Decomposable regularizers

Definition

A norm-based regularizer is decomposable with respect to a pair of subspaces $A\subseteq B$ if

$$r(\alpha + \beta) = r(\alpha) + r(\beta)$$
 for all $\alpha \in A$ and $\beta \in B^{\perp}$.

 $\begin{array}{ll} \alpha \in A & \text{Model/ideal vector} \\ \beta \in B^{\perp} & \text{Perturbation away from ideal} \end{array}$

Decomposable regularizers

Definition

A norm-based regularizer is decomposable with respect to a pair of subspaces $A\subseteq B$ if

$$r(\alpha + \beta) = r(\alpha) + r(\beta)$$
 for all $\alpha \in A$ and $\beta \in B^{\perp}$.

$$\begin{array}{ll} \alpha \in A & \text{Model/ideal vector} \\ \beta \in B^{\perp} & \text{Perturbation away from ideal} \end{array}$$

Intuition:

• By triangle inequality, we always have

$$r(\alpha + \beta) \le r(\alpha) + r(\beta).$$

• "Tough love": Decomposable regularizers penalize perturbation as much as possible.

Examples of decomposable regularizers

- Sparse vectors and ℓ_1 -regularization:
 - for each subset $S \subset \{1, \ldots, p\}$, define subspace pairs

$$A(S) := \{ \theta \in \mathbb{R}^p \mid \theta_{S^c} = 0 \},$$

$$B^{\perp}(S) := \{ \theta \in \mathbb{R}^p \mid \theta_S = 0 \} = A^{\perp}(S).$$

• decomposability of ℓ_1 -norm:

$$\left\|\theta_S + \theta_{S^c}\right\|_1 \quad = \quad \|\theta_S\|_1 + \|\theta_{S^c}\|_1 \quad \text{for all } \theta_S \in A(S) \text{ and } \theta_{S^c} \in B^\perp(S).$$

Examples of decomposable regularizers

- Sparse vectors and ℓ_1 -regularization:
 - for each subset $S \subset \{1, \ldots, p\}$, define subspace pairs

$$A(S) := \{ \theta \in \mathbb{R}^p \mid \theta_{S^c} = 0 \},$$

$$B^{\perp}(S) := \{ \theta \in \mathbb{R}^p \mid \theta_S = 0 \} = A^{\perp}(S).$$

• decomposability of ℓ_1 -norm:

$$\left\|\theta_S + \theta_{S^c}\right\|_1 \quad = \quad \|\theta_S\|_1 + \|\theta_{S^c}\|_1 \quad \text{for all } \theta_S \in A(S) \text{ and } \theta_{S^c} \in B^\perp(S).$$

- Low-rank matrices and nuclear norm
 - for each pair of r-dimensional subspaces $U \subseteq \mathbb{R}^{p_1}$ and $V \subset \mathbb{R}^{p_2}$:

$$A(U, V) := \{ \Theta \in \mathbb{R}^{p_1 \times p_2} \mid \operatorname{row}(\Theta) \subseteq V, \operatorname{col}(\Theta) \subseteq U \}$$

$$B^{\perp}(U, V) := \{ \Gamma \in \mathbb{R}^{p_1 \times p_2} \mid \operatorname{row}(\Gamma) \subseteq V^{\perp}, \operatorname{col}(\Gamma) \subseteq U^{\perp} \}.$$

By construction, $\langle\!\langle \Theta, \Gamma \rangle\!\rangle = 0$ for all $\Theta \in A(U, V)$ and $\Gamma \in (U, V)$.

• decomposability of nuclear norm $\|\Theta\|_1 = \sum_{j=1}^{\min\{p_1, p_2\}} \sigma_j(\Theta)$:

$$\|\Theta + \Gamma\|_1 = \|\Theta\|_1 + \|\Gamma\|_1 \quad \forall \quad \Theta \in A(U, V), \Gamma \in B^{\perp}(U, V)$$

Significance of decomposability

Lemma

Suppose that \mathcal{L} is convex, and r is decomposable w.r.t. (A, B). Then as long as $\lambda_n \geq 2r^*(\nabla \mathcal{L}(\theta^*;))$, any solution $\widehat{\theta}_{\lambda_n}$ the error $\widehat{\Delta} = \widehat{\theta}_{\lambda_n} - \theta^*$ belongs to

$$\mathbb{C}(A,B;\theta^*) := \big\{\Delta \in \Omega \ | \ r(\Pi_{B^\perp}(\Delta)) \leq 3r(\Pi_B(\Delta)) + 4r(\Pi_{A^\perp}(\theta^*))\big\}.$$

Role of curvature

① Curvature controls difficulty of estimation:

High curvature: easy to estimate

(b) Low curvature: harder

Role of curvature

• Curvature controls difficulty of estimation:

High curvature: easy to estimate

(b) Low curvature: harder

2 Curvature captured by strong convexity constant c > 0

$$\underbrace{\mathcal{L}(\theta^* + \Delta) - \mathcal{L}(\theta^*) - \langle \nabla \mathcal{L}(\theta^*), \Delta \rangle}_{\delta \mathcal{L}(\Delta, \theta^*)} \ge c \|\Delta\|_{\star}^2$$

for all Δ in a neighborhood of θ^* .

Restricted strong convexity

For $p \gg n$, loss is flat in at least p-n directions.

Restricted strong convexity

For $p \gg n$, loss is flat in at least p-n directions.

Definition

Loss function $\mathcal{L}(\theta) = \mathcal{L}(\theta; Z_1^n)$ satisfies restricted strong convexity (RSC) over a set \mathbb{K}

$$\underbrace{\mathcal{L}(\theta^* + \Delta) - \mathcal{L}(\theta^*)}_{\text{Excess loss}} - \langle \underbrace{\nabla \mathcal{L}(\theta^*)}_{\text{score}}, \Delta \rangle \geq \gamma(\mathcal{L}) \|\Delta\|_{\star}^2 \quad \text{for all } \Delta \in \mathbb{K}.$$

When $\mathbb{K} = \mathbb{C}(S)$, natural generalization of restricted nullspace/eigenvalue conditions.

What sets to use for restricted strong convexity?

• For exact case, RSC can hold over

$$\mathbb{C}(A, B; \theta^*) := \left\{ \Delta \in \Omega \mid r(\Pi_{B^{\perp}}(\Delta)) \le 3r(\Pi_B(\Delta)) + \underbrace{4r(\Pi_{A^{\perp}}(\theta^*))}_{\text{Zero when } \theta^* \in A} \right\}.$$

What sets to use for restricted strong convexity?

• For exact case, RSC can hold over $\mathbb{C}(A,B;\theta^*) := \big\{ \Delta \in \Omega \mid r(\Pi_{B^\perp}(\Delta)) \leq 3r(\Pi_B(\Delta)) + \underbrace{4r(\Pi_{A^\perp}(\theta^*))}_{\text{Zero when } \theta^* \in A} \big\}.$

• For approximate case, RSC never holds over $\mathbb{C}(A, B; \theta^*)$.

What sets to use for restricted strong convexity?

• For approximate case, \mathbb{C} is not a cone:

$$\mathbb{C}(A,B;\theta^*) := \left\{ \Delta \in \Omega \mid r(\Pi_{B^{\perp}}(\Delta)) \leq 3r(\Pi_B(\Delta)) + \underbrace{4r(\Pi_{A^{\perp}}(\theta^*))}_{\text{Non-zero when } \theta^* \notin A} \right\}$$

• Need to intersect with a ball of $\|\cdot\|_{\star}$ radius δ

$$\mathbb{K}(\delta, A, B; \theta^*) := \mathbb{C}(A, B; \theta^*) \cap \{\Delta \in \mathbb{R}^p \mid \|\Delta\|_{\star} = \delta\}.$$

Main theorem

Estimator $\widehat{\theta} \in \arg\min_{\theta \in \mathbb{R}^p} \{ \mathcal{L}(\theta; Z_1^n) + \lambda_n r(\theta) \}.$

Decomposable across subspace pair $A \subseteq B$, where A represents model constraints.

Theorem (Negahban, Ravikumar, W., & Yu, 2009)

Consider the regularized problem for strictly positive $\lambda_n \geq \frac{2r^*(\nabla \mathcal{L}(\theta^*; Z_1^n))}{2r^*}$. If $\theta^* \in A$ and RSC holds over $\mathbb{C}(A, B; \theta^*)$, then any solution $\widehat{\theta}_{\lambda_n}$ satisfies

$$\|\widehat{\theta}_{\lambda_n} - \theta^*\|_2 \le \frac{1}{\gamma(\mathcal{L})} \Psi(B) \frac{\lambda_n}{\lambda_n}.$$

Quantities that control rates:

- ullet restricted strong convexity parameter: $\gamma(\mathcal{L})$
- dual norm of regularizer: $r^*(v) := \sup_{v \in V_0} \langle v, u \rangle$.
- subspace const.: $\Psi(B) = \sup_{\theta \in B \setminus \{0\}} r(\theta) / \|\theta\|_{\star}$

Main theorem

Estimator $\widehat{\theta} \in \arg\min_{\theta \in \mathbb{R}^p} \{ \mathcal{L}(\theta; Z_1^n) + \lambda_n r(\theta) \}.$

Decomposable across subspace pair $A \subseteq B$, where A represents model constraints.

Theorem (Negahban, Ravikumar, W., & Yu, 2009)

Consider the regularized problem for strictly positive $\lambda_n \geq 2r^*(\nabla \mathcal{L}(\theta^*; Z_1^n))$. Define the critical tolerance

$$\delta_n := \inf_{\delta > 0} \bigg\{ \delta \mid \delta \ge \underbrace{\frac{2\lambda_n}{\gamma(\mathcal{L})} \Psi(B)}_{\mathcal{E}_{\text{total}}} + \underbrace{\sqrt{\frac{2\lambda_n r(\Pi_{A^{\perp}}(\theta^*))}{\gamma(\mathcal{L})}}}_{\mathcal{G}_{\text{total}}} \text{ and RSC over } \mathbb{K}(\delta; A, B) \bigg\}.$$

Then any solution $\widehat{\theta}_{\lambda_n}$ satisfies the bound $\|\widehat{\theta} - \theta^*\|_{\star} \leq \delta_n$.

Quantities that control rates:

- restricted strong convexity parameter: $\gamma(\mathcal{L})$
- dual norm of regularizer: $r^*(v) := \sup_{v \in V} \langle v, u \rangle$.
- subspace const.: $\Psi(B) = \sup_{\theta \in B \setminus \{0\}} r(\theta) / \|\theta\|_{\star}$

Example: Linear regression (exact sparsity)

- Lasso program: $\min_{\theta \in \mathbb{R}^p} \{ \|y X\theta\|_2^2 + \lambda_n \|\theta\|_1 \}$
- RSC corresponds to lower bound on restricted eigenvalues of $X^TX \in \mathbb{R}^{p \times p}$
- for a k-sparse vector, we have $\|\theta\|_1 \leq \sqrt{k} \|\theta\|_2$.

Corollary

Suppose that true parameter θ^* is exactly k-sparse. Under RSC and with $\lambda_n \geq 2 \|\frac{X^T w}{n}\|_{\infty}$, then any Lasso solution satisfies $\|\widehat{\theta} - \theta^*\|_2 \leq \frac{2}{\gamma(L)} \sqrt{k} \lambda_n$.

Example: Linear regression (exact sparsity)

- Lasso program: $\min_{\theta \in \mathbb{R}^p} \{ \|y X\theta\|_2^2 + \lambda_n \|\theta\|_1 \}$
- RSC corresponds to lower bound on restricted eigenvalues of $X^TX \in \mathbb{R}^{p \times p}$
- for a k-sparse vector, we have $\|\theta\|_1 \leq \sqrt{k} \|\theta\|_2$.

Corollary

Suppose that true parameter θ^* is exactly k-sparse. Under RSC and with $\lambda_n \geq 2 \|\frac{X^T w}{n}\|_{\infty}$, then any Lasso solution satisfies $\|\widehat{\theta} - \theta^*\|_2 \leq \frac{2}{2(C)} \sqrt{k} \lambda_n$.

Some stochastic instances: recover known results

- Compressed sensing: $X_{ij} \sim N(0,1)$ and bounded noise $||w||_2 \leq \sigma \sqrt{n}$
- Deterministic design: X with bounded columns and $w_i \sim N(0, \sigma^2)$

$$\|\frac{X^T w}{n}\|_{\infty} \le \sqrt{\frac{3\sigma^2 \log p}{n}} \quad \text{w.h.p.} \implies \|\widehat{\theta} - \theta^*\|_2 \le \frac{4\sigma}{\gamma(\mathcal{L})} \sqrt{\frac{k \log p}{n}}.$$

(e.g., Candes & Tao, 2007; Huang & Zhang, 2008; Meinshausen & Yu, 2008; Bickel et al., 2008)

Example: Linear regression (weak sparsity)

• for some $q \in [0, 1]$, say θ^* belongs to ℓ_q -"ball"

$$\mathbb{B}_q(R_q) := \left\{ \theta \in \mathbb{R}^p \mid \sum_{i=1}^p |\theta_j|^q \le R_q \right\}.$$

Corollary

For $\theta^* \in \mathbb{B}_q(R_q)$, any Lasso solution satisfies (w.h.p.)

$$\|\widehat{\theta} - \theta^*\|_2^2 = \mathcal{O}\left[\sigma^2 R_q \left(\frac{\log p}{n}\right)^{1-q/2}\right].$$

• rate known to be minimax optimal (Raskutti, W. & Yu, 2009)

Example: Generalized linear models (GLM)

- not all observation processes are linear!
- generalized linear model linking covariates $x \in \mathbb{R}^p$ to output $y \in \mathcal{Y}$:

$$\mathbb{P}_{\theta}(y \mid x, \theta^*) \propto \exp \left\{ \frac{y \langle x, \theta^* \rangle - \Phi(\langle x, \theta^* \rangle)}{c(\sigma)} \right\}.$$

- Examples:
 - Ordinary linear observations: $\Phi(u) = u^2/2$
 - ▶ Bernoulli $(y \in \{-1, +1\})$: $\Phi(u) = \log(1 + \exp(u))$.
 - Poisson: $\Phi(u) = \exp(u)$.

Example: Generalized linear models (GLM)

- not all observation processes are linear!
- generalized linear model linking covariates $x \in \mathbb{R}^p$ to output $y \in \mathcal{Y}$:

$$\mathbb{P}_{\theta}(y \mid x, \theta^*) \propto \exp \left\{ \frac{y \langle x, \theta^* \rangle - \Phi(\langle x, \theta^* \rangle)}{c(\sigma)} \right\}.$$

- Examples:
 - Ordinary linear observations: $\Phi(u) = u^2/2$
 - ▶ Bernoulli $(y \in \{-1, +1\})$: $\Phi(u) = \log(1 + \exp(u))$.
 - Poisson: $\Phi(u) = \exp(u)$.

Theorem (Negahban, Ravikumar, W. & Yu, 2010)

There exist constants (κ_1, κ_2) , depending only on $(\psi, cov(x))$, such that

$$\underbrace{\delta \mathcal{L}(\Delta, \theta^*;)}_{Taylor\ err} \ge \kappa_1 \|\Delta\|_2 \left\{ \|\Delta\|_2 - \kappa_2 \sqrt{\frac{\log p}{n}} \|\Delta\|_1 \right\} \qquad \text{for all } \|\Delta\|_2 \le 1$$

with probability greater than $1 - c_1 \exp(-c_2 n)$.

Example: Group-structured regularizers

Many applications exhibit sparsity with more structure.....

- divide index set $\{1, 2, \dots, p\}$ into groups $\mathcal{G} = \{G_1, G_2, \dots, G_T\}$
- for parameters $\nu_i \in [1, \infty]$, define block-norm

$$\|\theta\|_{\nu,\mathcal{G}} := \sum_{t=1}^{T} \|\theta_{G_t}\|_{\nu_t}$$

• group/block Lasso program

$$\widehat{\theta}_{\lambda_n} \; \in \; \arg \min_{\theta \in \mathbb{R}^p} \big\{ \frac{1}{2n} \|y - X\theta\|_2^2 + \frac{\mathbf{\lambda_n}}{\mathbf{\lambda_n}} \|\theta\|_{\nu,\mathcal{G}} \big\}.$$

different versions studied by various authors
 (Wright et al., 2005; Tropp et al., 2006; Yuan & Li, 2006; Baraniuk, 2008; Obozinski et al., 2008; Zhao et al., 2008)

Convergence rates for general group Lasso

Corollary

Say Θ^* is supported on $s_{\mathcal{G}}$ groups, and X satisfies RSC. Then for regularization parameter

$$\lambda_n \ge 2 \max_{t=1,2,...,T} \left\| \frac{X^T w}{n} \right\|_{\nu_t^*}, \quad where \ \frac{1}{\nu_t^*} = 1 - \frac{1}{\nu_t},$$

any solution $\widehat{\theta}_{\lambda_n}$ satisfies

$$\|\widehat{\theta}_{\lambda_n} - \theta^*\|_2 \le \frac{2}{\gamma(\mathcal{L})} \Psi_{\nu}(S_{\mathcal{G}}) \frac{\lambda_n}{\lambda_n}, \quad where \ \Psi_{\nu}(S_{\mathcal{G}}) = \sup_{\theta \in A(S_{\mathcal{G}}) \setminus \{0\}} \frac{\|\theta\|_{\nu,\mathcal{G}}}{\|\theta\|_2}.$$

Convergence rates for general group Lasso

Corollary

Say Θ^* is supported on $s_{\mathcal{G}}$ groups, and X satisfies RSC. Then for regularization parameter

$$\lambda_n \ge 2 \max_{t=1,2,\dots,T} \left\| \frac{X^T w}{n} \right\|_{\nu_t^*}, \quad where \ \frac{1}{\nu_t^*} = 1 - \frac{1}{\nu_t},$$

any solution $\widehat{\theta}_{\lambda_n}$ satisfies

$$\|\widehat{\theta}_{\lambda_n} - \theta^*\|_2 \le \frac{2}{\gamma(\mathcal{L})} \Psi_{\nu}(S_{\mathcal{G}}) \frac{\lambda_n}{\lambda_n}, \quad where \ \Psi_{\nu}(S_{\mathcal{G}}) = \sup_{\theta \in A(S_{\mathcal{G}}) \setminus \{0\}} \frac{\|\theta\|_{\nu,\mathcal{G}}}{\|\theta\|_2}.$$

Some special cases with $m \equiv \max$, group size

• ℓ_1/ℓ_2 regularization: Group norm with $\nu=2$

$$\|\widehat{\theta}_{\lambda_n} - \theta^*\|_2^2 = \mathcal{O}(\frac{s_{\mathcal{G}}m}{n} + \frac{s_{\mathcal{G}}\log T}{n}).$$

This rate is minimax-optimal.

(Raskutti, W. & Yu, 2010)

Convergence rates for general group Lasso

Corollary

Say Θ^* is supported on $s_{\mathcal{G}}$ groups, and X satisfies RSC. Then for regularization parameter

$$\lambda_n \ge 2 \max_{t=1,2,\dots,T} \left\| \frac{X^T w}{n} \right\|_{\nu_t^*}, \quad where \ \frac{1}{\nu_t^*} = 1 - \frac{1}{\nu_t},$$

any solution $\widehat{\theta}_{\lambda_n}$ satisfies

$$\|\widehat{\theta}_{\lambda_n} - \theta^*\|_2 \le \frac{2}{\gamma(\mathcal{L})} \Psi_{\nu}(S_{\mathcal{G}}) \frac{\lambda_n}{\lambda_n}, \quad where \ \Psi_{\nu}(S_{\mathcal{G}}) = \sup_{\theta \in A(S_{\mathcal{G}}) \setminus \{0\}} \frac{\|\theta\|_{\nu,\mathcal{G}}}{\|\theta\|_2}.$$

Some special cases with $m \equiv \max$, group size

 $\mathbf{0}$ ℓ_1/ℓ_{∞} regularization: Group norm with $\nu=\infty$

$$\|\widehat{\theta}_{\lambda_n} - \theta^*\|_2^2 = \mathcal{O}\left(\frac{s_{\mathcal{G}}m^2}{n} + \frac{s_{\mathcal{G}}\log T}{n}\right).$$

Example: Low-rank matrices and nuclear norm

- low-rank matrix $\Theta^* \in \mathbb{R}^{p_1 \times p_2}$ that is exactly (or approximately) low-rank
- noisy/partial observations of the form

$$y_i = \langle \langle X_i, \Theta^* \rangle \rangle + w_i, i = 1, \dots, n, w_i \text{ i.i.d. noise}$$

• estimate by solving semi-definite program (SDP):

$$\widehat{\Theta} \in \arg\min_{\Theta} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - \langle \langle X_i, \Theta \rangle \rangle)^2 + \lambda_n \underbrace{\sum_{j=1}^{\min\{p_1, p_2\}} \sigma_j(\Theta)}_{\|\|\Theta\|_1} \right\}$$

Example: Low-rank matrices and nuclear norm

- low-rank matrix $\Theta^* \in \mathbb{R}^{p_1 \times p_2}$ that is exactly (or approximately) low-rank
- noisy/partial observations of the form

$$y_i = \langle \langle X_i, \Theta^* \rangle \rangle + w_i, i = 1, \dots, n, w_i$$
 i.i.d. noise

• estimate by solving semi-definite program (SDP):

$$\widehat{\Theta} \in \arg\min_{\Theta} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - \langle \langle X_i, \Theta \rangle \rangle)^2 + \lambda_n \underbrace{\sum_{j=1}^{\min\{p_1, p_2\}} \sigma_j(\Theta)}_{\|\Theta\|_1} \right\}$$

- studied in past work (Fazel, 2001; Srebro et al., 2004; Bach, 2008)
- observations based on random projection (Recht, Fazel & Parillo, 2007)
- work on matrix completion (Srebro, 2004; Candes & Recht, 2008; Recht, 2009; Negahban & W., 2010)
- other work on general noisy observation models (Rohde & Tsybakov, 2009; Negahban & W., 2009)

Rates for (near) low-rank estimation

For parameter $q \in [0, 1]$, set of near low-rank matrices:

$$\mathbb{B}_q(R_q) = \left\{ \Theta^* \in \mathbb{R}^{p_1 \times p_2} \mid \sum_{i=1}^{\min\{p_1, p_2\}} |\sigma_j(\Theta^*)|^q \le R_q \right\}.$$

Corollary (Negahban & W., 2009)

Under RSC condition, with regularization parameter $\lambda_n \geq 16\sigma\left(\sqrt{\frac{p_1}{n}} + \sqrt{\frac{p_2}{n}}\right)$, we have w.h.p.

$$\|\widehat{\Theta} - \Theta^*\|_F^2 \le c_0 \frac{R_q}{\gamma(\mathcal{L})^2} \left(\frac{\sigma^2 \left(p_1 + p_2\right)}{n}\right)^{1 - \frac{3}{2}}$$

Rates for (near) low-rank estimation

For parameter $q \in [0, 1]$, set of near low-rank matrices:

$$\mathbb{B}_q(R_q) = \left\{ \Theta^* \in \mathbb{R}^{p_1 \times p_2} \mid \sum_{i=1}^{\min\{p_1, p_2\}} |\sigma_j(\Theta^*)|^q \le R_q \right\}.$$

Corollary (Negahban & W., 2009)

Under RSC condition, with regularization parameter $\lambda_n \geq 16\sigma\left(\sqrt{\frac{p_1}{n}} + \sqrt{\frac{p_2}{n}}\right)$, we have w.h.p.

$$\|\widehat{\Theta} - \Theta^*\|_F^2 \leq c_0 \frac{R_q}{\gamma(\mathcal{L})^2} \left(\frac{\sigma^2 \left(p_1 + p_2\right)}{n}\right)^{1 - \frac{q}{2}}$$

• for a rank r matrix M

$$\|M\|_1 = \sum_{j=1}^r \sigma_j(M) \le \sqrt{r} \sqrt{\sum_{j=1}^r \sigma_j^2(M)} = \sqrt{r} \|M\|_F$$

• solve nuclear norm regularized program with $\lambda_n \geq \frac{2}{n} \| \sum_{i=1}^n w_i X_i \|_2$

Restricted strong convexity and nuclear norm

• observations $\{y_i = \langle \langle X_i, \Theta^* \rangle \rangle + w_i, i = 1, \dots, n\}$ define observation operator

$$\mathfrak{X}: \mathbb{R}^{p_1 \times p_2} \to \mathbb{R}^n, \qquad [\mathfrak{X}(\Delta)]_i = \langle \langle X_i, \Delta \rangle \rangle.$$

• restricted strong convexity for quadratic loss: $\frac{\|\mathfrak{X}(\Delta)\|_2}{\sqrt{n}} \geq \gamma \|\Delta\|_F$ for all matrices $\Delta \in \mathbb{R}^{p_1 \times p_2}$ in

$$\mathbb{K} = \left\{ \|\Delta\|_F = \delta \right\} \cap \left\{ \Delta \, | \, \, \|\Pi_{B^\perp}(\Delta)\|_1 \leq 3 \|\Pi_B(\Delta)\|_1 + 4 \|\Pi_{A^\perp}(\Theta^*)\|_1 \right\}$$

ullet let's consider this condition for standard random Gaussian matrices X_i

Restricted strong convexity and nuclear norm

• observations $\{y_i = \langle \langle X_i, \Theta^* \rangle \rangle + w_i, i = 1, \dots, n\}$ define observation operator

$$\mathfrak{X}: \mathbb{R}^{p_1 \times p_2} \to \mathbb{R}^n, \qquad [\mathfrak{X}(\Delta)]_i = \langle \langle X_i, \Delta \rangle \rangle.$$

• restricted strong convexity for quadratic loss: $\frac{\|\mathfrak{X}(\Delta)\|_2}{\sqrt{n}} \geq \gamma \|\Delta\|_F$ for all matrices $\Delta \in \mathbb{R}^{p_1 \times p_2}$ in

$$\mathbb{K} = \left\{ \|\Delta\|_F = \delta \right\} \cap \left\{ \Delta \, | \, \, \|\Pi_{B^\perp}(\Delta)\|_1 \leq 3 \|\Pi_B(\Delta)\|_1 + 4 \|\Pi_{A^\perp}(\Theta^*)\|_1 \right\}$$

ullet let's consider this condition for standard random Gaussian matrices X_i

Proposition (Negahban & W., 2009)

Suppose that $X_i \in \mathbb{R}^{p_1 \times p_2}$ are i.i.d. random Gaussian matrices. Then

$$\frac{\|\mathfrak{X}(\Delta)\|_2}{\sqrt{n}} \ge \frac{1}{4} \|\Delta\|_F - \left(\sqrt{\frac{p_1}{n}} + \sqrt{\frac{p_2}{n}}\right) \|\Delta\|_1 \quad \text{for all } \Delta \in \mathbb{R}^{p_1 \times p_2}$$

with probability greater than $1 - c_1 \exp(-c_2 n)$.

Results for noisy matrix completion (unrescaled)

Results for noisy matrix completion (rescaled)

Summary

- convergence rates for high-dimensional estimators
 - ightharpoonup decomposability of regularizer r
 - restricted strong convexity of loss functions
- actual rates determined by:
 - \triangleright noise measured in dual function r^*
 - subspace constant Ψ in moving from r to error norm $\|\cdot\|_{\star}$
 - restricted strong convexity constant
- recovered some known results as corollaries:
 - ► Lasso with hard sparsity
 - multivariate group Lasso
 - \blacktriangleright inverse covariance matrix estimation via log-determinant
- derived some new results on ℓ_2 or Frobenius norm:
 - models with weak sparsity
 - log-linear models with weak/exact sparsity
 - ▶ low-rank matrix estimation
 - ▶ other models? other error metrics?

Some papers (www.eecs.berkeley.edu/~wainwrig)

- S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu (2010). A unified framework for high-dimensional analysis of *M*-estimators with decomposable regularizers. *Statistical Science*. arxiv.org/abs/1010.2731.
- ② S. Negahban and M. J. Wainwright (2009). Estimation rates of (near) low-rank matrices with noise and high-dimensional scaling. *Annals of Statistics*, arxiv.org/abs/0912.5100.
- **3** S. Negahban and M. J. Wainwright (2010). Restricted strong convexity and (weighted) matrix completion: Optimal bounds with noise. To appear in *Journal of Machine Learning Research*. arxiv.org/abs/0112.5100.
- **3** G. Raskutti, M. J. Wainwright and B. Yu (2011) Minimax rates for linear regression over ℓ_q -balls. *IEEE Trans. Information Theory*, arxiv.org/abs/arXiv:0910.2042.
- G. Raskutti, M. J. Wainwright and B. Yu (2010). Restricted nullspace and eigenvalue properties for correlated Gaussian designs. *Journal of Machine Learning Research*.