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Introduction

classical asymptotic theory: sample size n — 400 with number of
parameters p fixed

modern applications in science and engineering:

» large-scale problems: both p and n may be large (possibly p > n)
» need for high-dimensional theory that allows (n,p) — +oo

curses and blessings of high dimensionality
» exponential explosions in computational complexity
» statistical curses (sample complexity)
» concentration of measure

need for embedded low-dimensional structures
» sparse vectors (compressed sensing)

structured /patterned matrices

(near) low-rank matrices

Markov random fields

manifold structure
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Loss functions and regularization

@ Models: Indexed class of probability distributions {Py | 6 € Q}
@ Data: samples Z}' = (x;,9;), ¢ = 1,...,n drawn from unknown Py-

o Estimation: Minimize loss function plus regularization term:

~

0 € i L(6; Z7 Anr(0) L.
| argmin {  L(6:27)  +  Aar(0) }
Estimate Loss function Regularizer
@ Goal: For given error norm || - ||«

» want upper bounds on |6 — 6|,

» non-asymptotic results allowing for (n,p, s1, $2,...) — 0o where
* n = sample size
* p = dimension of parameter space 2
* s; = structural parameters (e.g., sparsity, rank, graph degree)



Example: Sparse linear regression
Y X o w
I - S I
n - +
SC

Set-up: noisy observations y = X6* + w with sparse 0*

Estimator: Lasso program
1 o £
0 in — =zl 0)2 + 0. 10,
€ argnbmn Z(yz z; 0)° + n;| i

i=1

Some past work: Tibshirani, 1996; Chen et al., 1998; Donoho/Xuo, 2001; Tropp, 2004;
Fuchs, 2004; Efron et al., 2004; Meinshausen & Buhlmann, 2005; Candes & Tao, 2005;
Donoho, 2005; Haupt & Nowak, 2005; Zhou & Yu, 2006; Zou, 2006; Koltchinskii, 2007; van
de Geer, 2007: Bickel, Ritov & Tsybakov, 2008, Zhang, 2009 .....



Example: Structured (inverse) covariance matrices

Zero pattern of inverse covariance

1 2 3 4 5 4

Set-up: Samples from random vector with sparse covariance X or sparse
inverse covariance ©* € RP*P,

Estimator (for inverse covariance)

O € arg mln{ Zx z7, —logdet(©) + )‘“Z ||(~)b|p}

beEB

Some past work: Yuan & Lin, 2006; d’Asprémont et al., 2007; Bickel & Levina, 2007; El
Karoui, 2007; d’Aspremont et al., 2007; Rothman et al., 2007; Zhou et al., 2007; Friedman
et al., 2008: Lam & Fan, 2008: Ravikumar et al., 2008: Zhou, Cai & Huang, 2009



Example: Low-rank matrix approximation

VT

Set-up: Matrix ©* € RP**P2 with rank r < min{py, p2}.

@*

Estimator:
1 min{pi,p2}
= (X5, O + M\ (O
6 e argmm{nzj T MY )}

Some past work: Fazel, 2001; Srebro et al., 2004; Recht, Fazel & Parillo, 2007; Bach, 2008;
Candes & Recht, 2008; Keshavan et al., 2009; Rohde & Tsybakov, 2009; Recht, 2009;
Negahban & W., 2009



Example: Discrete Markov random fields

Ok (x5, k)

9j($j)ﬂi v Or(@k)

Set-up: Samples from discrete MRF(e.g., Ising or Potts model):

Po(z1,...,2p) = 57 exp{ ZH xj) Z Ojk(xj, 1) }-

JEV (4:k)€E
Estimator: Given empirical marginal distributions {i;, [k }:

6 e argmm{ZEM @)+ Y Bl Jk(xJ,M]—logZ<0>+AnZ|ejk;|F}
(:

sev jik) (j.k)

Some past work: Spirtes et al., 2001; Abbeel et al., 2005; Csiszar & Telata, 2005;
Ravikumar et al, 2007; Schneidman et al., 2007; Santhanam & Wainwright, 2008; Sly et al.,
2008: Montanari and Pereira. 2009



Example: Sparse principal components analysis

= +

n z27T D

Set-up: Covariance matrix ¥ = ZZ7 4+ D, where leading eigenspace Z has
sparse columns.

Estimator:
6 < argugn{ (0. 5) + 2,3 10,4/}
(3,k)
Some past work: Johnstone, 2001; Joliffe et al., 2003; Johnstone & Lu, 2004; Zou et al.,
2004; d’Asprémont et al., 2007; Johnstone & Paul, 2008; Amini & Wainwright, 2008



Motivation and outline

@ a large number of high-dimensional models and associated results on
regularized estimators

@ is there a core set of ideas that underlie these analyses?
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Motivation and outline

@ a large number of high-dimensional models and associated results on
regularized estimators

@ is there a core set of ideas that underlie these analyses?

This tutorial:

© Part I: Linear regression with sparsity constraints

» Restricted nullspace and £;-minimization
» A random matrix theory result
» Restricted eigenvalues and Lasso

© Part II: A more general theory

» Decomposability of regularizers

» Restricted strong convexity of loss function
» A main theorem

» Some consequences

Martin Wainwright (UC Berkeley High-dimensional statistics October, 2010 9/ 39



Noiseless linear models and basis pursuit
X o*
- S
SC
@ under-determined linear system: unidentifiable without constraints
@ say 0* € RP is sparse: supported on S C {1,2,...,p}.

Y

n =

fo-optimization f1-relaxation
0 = in || 0 in [|0
arg min |9l € arg min [|6]];
X0=y X0=y
Computationally intractable Linear program (easy to solve)

NP-hard Basis pursuit relaxation



Restricted nullspace: necessary and sufficient

Definition

For a fixed S C {1,2,...,p}, the matrix X € R"*P satisfies the restricted
nullspace property w.r.t. S, or RN(S) for short, if

{AeR! | XA=0} N {AeR? | [|Ase|1 < || As]l1} = {0}.

N(X) C(9)

(Donoho & Xu, 2001; Feuer & Nemirovski, 2003; Cohen et al, 2009)




Restricted nullspace: necessary and sufficient

Definition
For a fixed S C {1,2,...,p}, the matrix X € R"*P satisfies the restricted
nullspace property w.r.t. S, or RN(S) for short, if

{AeR? | XA=0} n {AeR? | A < [|As]l} = {0}

N(X) C(9)

(Donoho & Xu, 2001; Feuer & Nemirovski, 2003; Cohen et al, 2009)

Proposition

Basis pursuit ¢;-relaxation is exact for all S-sparse vectors <= X satisfies
RN(.9).




Restricted nullspace: necessary and sufficient

Definition

For a fixed S C {1,2,...,p}, the matrix X € R"*P satisfies the restricted
nullspace property w.r.t. S, or RN(S) for short, if

{AeR! | XA=0} N {AeR? | [|Ase|1 < || As]l1} = {0}.

N(X) C(9)

(Donoho & Xu, 2001; Feuer & Nemirovski, 2003; Cohen et al, 2009)

Proof (sufficiency):

(1) Error vector A = 6* — § satisfies XA = 0, and hence A € N(X).
(2) Show that A € C(S)

Sparsity of 0*:  ||0]]; = 0" + Ally = |05 + Aslh + [|Ase])1.
Triangle inequality:  [16% + As| + [Ascll > 051 = [As]l1 + [|Ase]s.

Optimality of 0: 0], < [16"[, = [0%]1.

(3) Hence, A € N(X)NC(S), and (RN) = A =0.



lllustration of restricted nullspace property

Ag A3

(A1, Az)

@ consider 0* = (0,0, 65), so that S = {3}.

@ error vector A =0 — §* belongs to the set

C(S51) := {(A1, 82, 83) € R | [A1] + [As] < [Asl}.

Martin Wainwright (UC Berkeley) High-dimensional statistics



Some sufficient conditions

How to verify RN property for a given sparsity s?

© Elementwise incoherence condition (Donoho & Xuo, 2001; Feuer & Nem., 2003)

p

NI R g = < =
s [ cup=a <

1

© Restricted isometry, or submatrix incoherence

(Candes & Tao, 2005)

XTI Xy
n

S 623-

— Luxu|

[U|<2s

1 T
2
- [J —_—




Some sufficient conditions
How to verify RN property for a given sparsity s?

© Elementwise incoherence condition (Donoho & Xuo, 2001; Feuer & Nem., 2003)
P

— Iy =k]| < —
j,krilﬁ}f‘,p n [] ]’ > LN Ty

Matrices with i.i.d. sub-Gaussian entries: holds w.h.p. for n = Q(s*logp)

© Restricted isometry, or submatrix incoherence (Candes & Tao, 2005)

1 foo!
S 623-
2

- [J —_—

XTI Xy
n

max _I\U|><|U\

[U|<2s

Matrices with i.i.d. sub-Gaussian entries: holds w.h.p. for n = Q(slog Z)




Violating matrix incoherence (elementwise/RIP)

Important:

Incoherence/RIP conditions imply RN, but are far from necessary.
Very easy to violate them.....




Violating matrix incoherence (elementwise/RIP)

Form random design matrix

X7
X3
X = [331 To ... xp] = T | e R"*P, each row X; ~ N(0,Y), i.i.d.
p columns xT
~——
T TOWS

Example: For some p € (0,1), consider the covariance matrix

Y= (1— p)lyxp +p11T.



Violating matrix incoherence (elementwise/RIP)

Form random design matrix

Xt
X3
X = [331 T xp] = T | e R"*P,
p columns xT
——
n TOWS

each row X; ~ N(0,%), i.i.d.

Example: For some p € (0,1), consider the covariance matrix

Y= (1— p)lyxp +p11T.

@ Elementwise incoherence violated: for any j # k

(), zk)
n

P

> —e€| >1— cyexp(—cone?).



Violating matrix incoherence (elementwise/RIP)

Form random design matrix

X7
X3
X = [331 To ... xp] = T | e R"*P, each row X; ~ N(0,Y), i.i.d.
p columns xT
~——
T TOWS

Example: For some p € (0,1), consider the covariance matrix
Y= (1— p)lyxp +p11T.
@ Elementwise incoherence violated: for any j # k

>p— e] > 1 — cj exp(—cone?).
n

@ RIP constants tend to infinity as (n, |S]) increases:

M‘XSXS —ILoxs|ly > (s =1) =1~ 6} > 1 — c; exp(—cane®).



Direct result for restricted nullspace/eigenvalues

Theorem (Raskutti, W., & Yu, 2009)

Consider a random design X € R"*P with each row X; ~ N(0,X) i.i.d., and
define K(X) = max Y. Then for universal constants cy,ca,
J=1,42,...p

[RIP
Jn

with probability greater than 1 — ¢y exp(—can).

1
> Z||2Y29)), — 9k(Z) %’neul for all § € R

| —
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Direct result for restricted nullspace/eigenvalues

Theorem (Raskutti, W., & Yu, 2009)

Consider a random design X € R"*P with each row X; ~ N(0,X) i.i.d., and
define K(X) = max Y;;. Then for universal constants ci,ca,
=12,..p

=250

[RIP
Jn

with probability greater than 1 — ¢y exp(—can).

1
> Z||2Y29)), — 9k(Z) %’neul for all § € R

N |

@ much less restrictive than incoherence/RIP conditions

@ many interesting matrix families are covered
» Toeplitz dependency
» constant p-correlation (previous example)
» covariance matrix 3 can even be degenerate
» extensions to sub-Gaussian matrices (Rudelson & Zhou, 2012)

@ related results hold for generalized linear models
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Easy verification of restricted nullspace
o for any A € C(S5), we have
1Al = [[As]l + 1Ase ]l < 2[As] < 2Vs[[A]2

@ applying previous result:

(X All2 [slogp
7 > {)\mln(\/i) — 18k(%) n } Al

~Y(2)
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Easy verification of restricted nullspace
o for any A € C(S5), we have
1Al = [[As]l + [|Ase ]l < 2[As| <2Vs[A]2

@ applying previous result:

(X All2 ‘ _ 18k [slogp
7 > {)\mzn(\/i) 18 (2) n } ||A||2

(%)

@ have actually proven much more than restricted nullspace....

Definition
A design matrix X € R"*? satisfies the restricted eigenvalue (RE) condition
over S (denote RE(S)) with parameters v > 1 and v > 0 if

[ XA

NG > v[|All2 for all A € RP such that ||Age|1 < a|As]i-

(van de Geer, 2007; Bickel, Ritov & Tsybakov, 2008)

o



Lasso and restricted eigenvalues

Turning to noisy observations...
Y X 0 w
S
n o +
SC
Estimator: Lasso program

~ ) 1
0>, € arg min { —|ly — X0/3 + A [|0]|1 }.
OeRP * 2n

Goal: Obtain bounds on ||5>\n — 6*]|2 that hold with high probability.

Martin Wainwright (UC Berkeley) High-dimensional statistics



Lasso bounds: Four simple steps

Let’s analyze constrained version:

1
min — ||y — X6||2  such that [|0]]; < R = [|6*|,.
6cRP 2n




Lasso bounds: Four simple steps

Let’s analyze constrained version:

o1 «
Inin %Ily—)wll% such that [[0], < R = [|07]1.

(1) By optimality of 0 and feasibility of 6*:

1 ~ 1
—ly — X012 < —|ly — X07|2.
ol = X013 < o lly — X063



Lasso bounds: Four simple steps

Let’s analyze constrained version:

o1 .
min ——ly — X0[5  such that [0y < & =61

(1) By optimality of 0 and feasibility of 6*:

1 ~ 1
—ly — X012 < —|ly — X07|2.
ol = X013 < o lly — X063

(2) Derive a basic inequality: re-arranging in terms of A=0-0"

1, .~ 2 -
ZIXAN?2 < Z(A. XTw).
nll ”2*n<’ w)



Lasso bounds: Four simple steps

Let’s analyze constrained version:

1
in — ||y — X032 h th < R=6"|;.
min o [ly — X6|;  such that |6, < B = [|6"|

(1) By optimality of 0 and feasibility of 6*:
1 ~ 1
—|ly — X0|3 < —|ly — X0"||3.
o= lly = X013 < oy - X6°[3
(2) Derive a basic inequality: re-arranging in terms of A=0-0"
1, .~ 2~
—IXA2 < Z(A, XTw).
LIXAI < 2(, XTw)

(3) Restricted eigenvalue for LHS;  Holder’s inequality for RHS
XTw

n

~ 1 ~ 2~ —~
AR < —IXAJE < 2, XTw) < 24| |

oo’



Lasso bounds: Four simple steps

Let’s analyze constrained version:

1
in — ||y — X032 h th < R=6"|;.
min o [ly — X6|;  such that |6, < B = [|6"|

(1) By optimality of 0 and feasibility of 6*:
1 ~ 1
—|ly — X0|3 < —|ly — X0"||3.
o= lly = X013 < oy - X6°[3
(2) Derive a basic inequality: re-arranging in terms of A=0-0"
1, .~ 2~
—IXA2 < Z(A, XTw).
LIXAI < 2(, XTw)

(3) Restricted eigenvalue for LHS;  Holder’s inequality for RHS
XTw

n

oo’

~ 1 ~ 2~ —~
AR < —IXAJE < 2, XTw) < 24| |

(4) As before, A € C(5), so that ||All; < 2/5|All2, and hence

~ 4 X7
N



Lasso error bounds for different models

Proposition
Suppose that
@ vector 6* has support S, with cardinality s, and
@ design matrix X satisfies RE(S) with parameter v > 0.

For constrained Lasso with R = ||0*||; or regularized Lasso with
A = 2| XTw/n|| o, any optimal solution 6 satisfies the bound
XTw

n

floo-

18-, < 25
:
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@ vector 6* has support S, with cardinality s, and
@ design matrix X satisfies RE(S) with parameter v > 0.

For constrained Lasso with R = ||0*||; or regularized Lasso with
A = 2| XTw/n|| o, any optimal solution 6 satisfies the bound
XTw

n

floo-

18-, < 25
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@ this is a deterministic result on the set of optimizers
@ various corollaries for specific statistical models
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Lasso error bounds for different models

Proposition
Suppose that
@ vector 6* has support S, with cardinality s, and
@ design matrix X satisfies RE(S) with parameter v > 0.

For constrained Lasso with R = ||0*||; or regularized Lasso with
A = 2| XTw/n|| o, any optimal solution 6 satisfies the bound
XTw

n

floo-

18-, < 25
:

@ this is a deterministic result on the set of optimizers

@ various corollaries for specific statistical models
» Compressed sensing: X;; ~ N(0,1) and bounded noise ||w|]2 < oy/n
» Deterministic design: X with bounded columns and w; ~ N(0,0?)

XTw 3c2logp ~ 40 [slogp
Sy EE e e [T
n n ¥(L) n

Martin Wainwright (UC Berkeley) High-dimensional statistics October, 2010 19 / 39




Part Il: A more general theory

Recap: Thus far.....
@ Derived error bounds for basis pursuit and Lasso ({;-relaxation)

@ Seen importance of restricted nullspace and restricted eigenvalues
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Part Il: A more general theory

Recap: Thus far.....
@ Derived error bounds for basis pursuit and Lasso ({;-relaxation)

@ Seen importance of restricted nullspace and restricted eigenvalues

The big picture:

Lots of other estimators with same basic form:

%n cargmin{ L(6;Z7) +X . () }.
~~ 0€Q ° e — ~~

Estimate Loss function Regularizer
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Part Il: A more general theory

Recap: Thus far.....
@ Derived error bounds for basis pursuit and Lasso ({1-relaxation)
@ Seen importance of restricted nullspace and restricted eigenvalues

The big picture:

Lots of other estimators with same basic form:

0., €argmin { c;z27) +x rO }
~— Sy ~—— ~—
Estimate Loss function Regularizer

Past years have witnessed an explosion of results (compressed sensing,
covariance estimation, block-sparsity, graphical models, matrix completion...)

Question: Is there a common set of underlying principles?

Martin Wainwright (UC Berkeley) High-dimensional statistics October, 2010 20 / 39



Part Il: A more general theory

Recap: Thus far.....
@ Derived error bounds for basis pursuit and Lasso ({;-relaxation)

@ Seen importance of restricted nullspace and restricted eigenvalues

The big picture:

Lots of other estimators with same basic form:

@” cargmin{ L(6;Z7) +X . () }.
02 —— ~—~
Estimate Loss function Regularizer

Question: Is there a common set of underlying principles?

Answer: Yes, two essential ingredients.

© Decomposability of the regularizer

O Restricted strong convexity of the objective function

Martin Wainwright (UC Berkeley) High-dimensional statistics October, 2010

20 / 39



Decomposable regularizers

Definition

A norm-based regularizer is decomposable with respect to a pair of subspaces
ACBif

r(a+ B) =r(a)+r(B) for all « € A and 8 € B+.

acA Model/ideal vector
B e B* Perturbation away from ideal

Martin Wainwright (UC Berkeley) High-dimensional statistics



Decomposable regularizers

Definition
A norm-based regularizer is decomposable with respect to a pair of subspaces
ACBif

r(a+ B) =r(a)+r(B) for all « € A and 8 € B+.

acA Model/ideal vector
B € B+ Perturbation away from ideal

Intuition:
@ By triangle inequality, we always have

rla+ p) <r(a)+r(B).

@ “Tough love”: Decomposable regularizers penalize perturbation as much

as possible.

October, 2010 21 / 39
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Examples of decomposable regularizers

@ Sparse vectors and ¢;-regularization:
» for each subset S C {1,...,p}, define subspace pairs

A(S) = {HeR”|bs =0},
BH(S) = {0€R”|06s=0} = A (S).

» decomposability of £1-norm:

||495 + Osc

. = 6slli +116sc|l1 for all 65 € A(S) and Osc € B*(S).




Examples of decomposable regularizers

@ Sparse vectors and ¢;-regularization:
» for each subset S C {1,...,p}, define subspace pairs

A(S) = {HeR”|bs =0},
B*(S) = {0e€R’|6s=0} = A (S).

» decomposability of £1-norm:

|0s + Ose = ||6s|l1 + ||fs¢]l1 for all s € A(S) and s € B*(S).

1

@ Low-rank matrices and nuclear norm

» for each pair of r-dimensional subspaces U C RP* and V C RP2:

AU, V) {© e RPY*?2 | row(©) C V, col(®) C U}
BH(U,V) = {T eR"*” | row(I') C V", col(l) CU"}.
By construction, (6, I')) =0 for all © € A(U,V) and I € (U, V).
» decomposability of nuclear norm [|O]; = Y™ PP} 5 (@):

Jj=1

I©+ Tl = el +ITl vV ©€AU,V).I'eB (UYV)



Significance of decomposability

r(Ip(A)) r(Illp.(A))

r(lp.(A))

(a) C for exact model (cone) (b) C for approximate model (star-shaped)

Lemma

Suppose that L is convex, and r is decomposable w.T.t. (A B). Then as long
as Ap > 2r*(VL(0*;), any solution 9>\ the error A = 9>\ — 0* belongs to

C(4,B;60%) == {A € Q| r(Tlp. (A)) < 3r(TIp(A)) + 4r(TL4. (67))}.




Role of curvature

© Curvature controls difficulty of estimation:

oL

)
High curvature: easy to estimate

0 0
(b) Low curvature: harder



Role of curvature

© Curvature controls difficulty of estimation:

0 0 0 0
High curvature: easy to estimate (b) Low curvature: harder
© Curvature captured by strong convexity constant ¢ > 0

L0+ A) — L(6%) = (VLO), A) > c[| Al

SL(A,0%)

for all A in a neighborhood of 6*.



Restricted strong convexity

For p > n, loss is flat in at least p — n directions.



Restricted strong convexity

For p > n, loss is flat in at least p — n directions.

Definition
Loss function £(0) = L(0; Z7') satisfies restricted strong convexity (RSC) over
a set K

L0 +A) = L(6°) — (VLE*), A) > (LO)|A|?  for all A € K.
——

Excess loss score
function

When K = C(S), natural generalization of restricted nullspace/eigenvalue
conditions.



What sets to use for restricted strong convexity?

r(llp.(A))

(a) Exact case: 0* € A

@ For exact case, RSC can hold over
C(A, B;0%) := {A €Q | r(pi(A) <3r(Ip(A))+ 4r(Il4.(6%)) }
—_———

Zero when 0* € A



What sets to use for restricted strong convexity?

r(p.(A)) r(pe(A))

r(llp(A))

(a) Exact case: 0* € A (b) Approximate case: 0* ¢ A

@ For exact case, RSC can hold over
C(A, B; 6%) = {A €Q | r(Mpi(A) <3r(MIp(A))+ 4r(Il4.(6%)) }
—_———
Zero when 0* € A
@ For approximate case, RSC never holds over C(A, B;6*).



What sets to use for restricted strong convexity?

r(lp(A))

(a) Exact case: 0* € A (b) Approximate case: 0* ¢ A

@ For approximate case, C is not a cone:
C(A,B;0%) :=={A e Q| r(Ip.(A)) < 3r(llp(A)) + 4r(I14.(6%))
—_——
Non-zero when 6* ¢ A
@ Need to intersect with a ball of || - ||« radius §

K(6, A, B;0*) := C(A, B;6*) N {A€R” | |A], =6}.



Main theorem

Estimator § € argmingegs {L£@0; Z7) + Xar(0) }.
Decomposable across subspace pair A C B, where A represents model
constraints.

Theorem (Negahban, Ravikumar, W., & Yu, 2009)

Consider the regularized problem for strictly positive A, > 2r*(VL(0*; Z1")). If
0* € A and RSC holds over C(A, B;0%), then any solution 0y, satisfies

1B, - 6"z < —
/

Quantities that control rates:
@ restricted strong convexity parameter: ’y(ﬁ)
@ dual norm of regularizer: r*(v) ;== sup (v, u).
r(u)=1
@ subspace const.: ¥(B) = sup r(6)/]|6]«
0eB\{0}



Main theorem

Estimator § € argmingegs {L£@0; Z7) + Xar(0) }.
Decomposable across subspace pair A C B, where A represents model
constraints.

Theorem (Negahban, Ravikumar, W., & Yu, 2009)

Consider the regularized problem for strictly positive \,, > 2r*(VL(0*; Z1)).
Define the critical tolerance

. 2\n 22,7 (Iau (67)) }
Op:=infqd | 6> U(B)+ 4/ ———=——= and RSC over K(6; A, B) ;.
nifol o= Zpem +(0) Cheoit)
Eerr Eapp

Then any solution é\)\n satisfies the bound ||§— 0|« < -

Quantities that control rates:
@ restricted strong convexity parameter: (L)

@ dual norm of regularizer: r*(v) := sup (v, u).
r(u)=1
@ subspace const.: ¥(B) = sup 7(0)/]|0]«
0eB\{0}




Example: Linear regression (exact sparsity)
@ Lasso program: Gnel]iR% {lly — X012 + Anll6]11}

@ RSC corresponds to lower bound on restricted eigenvalues of X7 X € RP*P
@ for a k-sparse vector, we have |01 < VE [|6]]2.

Corollary

Suppose that true parameter 0* is exactly k-sparse. Under RSC and with
T = -
An = 2|| 5|, then any Lasso solution satisfies |6 — 6% ||z < ﬁ\/g)\".

m




Example: Linear regression (exact sparsity)
@ Lasso program: GHEI%{}? {lly — X012 + Anll6]11}

@ RSC corresponds to lower bound on restricted eigenvalues of X7 X € RP*P
@ for a k-sparse vector, we have |01 < VE [|6]]2.

Corollary

Suppose that true parameter 0* is exactly k-sparse. Under RSC and with
T = -
An = 2|| 5|, then any Lasso solution satisfies |6 — 6% ||z < ﬁ\/g)\".

Some stochastic instances: recover known results
@ Compressed sensing: X;; ~ N(0,1) and bounded noise |w||2 < o/

@ Deterministic design: X with bounded columns and w; ~ N(0,c?)

Xw 30°lo ~ . _ 40 [Klogp
I - lloo < \/E whp, = [0 -0"]]2 < - gr
" " V(L) n

(e.g., Candes & Tao, 2007; Huang & Zhang, 2008; Meinshausen & Yu, 2008; Bickel et
al., 2008)




Example: Linear regression (weak sparsity)

@ for some q € [0, 1], say 6* belongs
to £4-“ball”

p
By(Rg) = {0 €R? | > 10;] < Ry}
j=1

Corollary

For 6* € By(R,), any Lasso solution satisfies (w.h.p.)

F-o3 = ofs2R, (E2)"").

n

@ rate known to be minimax optimal (Raskutti, W. & Yu, 2009)



Example: Generalized linear models (GLM)

@ not all observation procsses are linear!
@ generalized linear model linking covariates x € RP to output y € V:

x, 0*) — ®((x, 6*))

Po(y | x,@*)ocexp{y< ) }.

@ Examples:

» Ordinary linear observations: ®(u) = u?/2
» Bernoulli (y € {—1,+1}): ®(u) = log(1 + exp(u)).
» Poisson: ®(u) = exp(u).



Example: Generalized linear models (GLM)

@ not all observation procsses are linear!
@ generalized linear model linking covariates x € RP to output y € V:
x, 0*) — d((x, 9*>)}

c(o) '

Po(y | z,0%) exp{y<

@ Examples:

» Ordinary linear observations: ®(u) = u?/2
» Bernoulli (y € {—1,+1}): ®(u) = log(1 + exp(u)).
» Poisson: ®(u) = exp(u).

Theorem (Negahban, Ravikumar, W. & Yu, 2010)

There exist constants (K1, k2), depending only on (¢, cov(x)), such that

lo

SL(A,6%) > mllAIz{IIAIz — kg g”nAnl} for all |A]l> < 1
———

n
Taylor err

with probability greater than 1 — ¢y exp(—can).

van de Geer (2008), Tewari et al. (2010): some related results.




Example: Group-structured regularizers

Many applications exhibit sparsity with more structure.....

@ ) @D

Go Gs

@ divide index set {1,2,...,p} into groups G = {G1,Ga,...,Gr}

o for parameters v; € [1, 0], define block-norm

T
||9| v,G = Z ||9Gt||Vt
t=1

@ group/block Lasso program

~

1
0 in {— |y — X6/13 + \ul16ll.g}
A € arg min {o—ly — XOl5 + Au[16]v.6}

@ different versions studied by various authors
(Wright et al., 2005; Tropp et al., 2006; Yuan & Li, 2006; Baraniuk, 2008; Obozinski et
al., 2008; Zhao et al., 2008)



Convergence rates for general group Lasso

Corollary

Say ©* is supported on sg groups, and X satisfies RSC. Then for
regularization parameter

XTw 1 1
22 max ==y, where gr =1,
any solution é;\n satisfies
5 . 2 lle]
16x, — 072 < U, (Sg) An, where U, (Sg) = sup 2
(L) " . pca(sonfo} 10N
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Convergence rates for general group Lasso

Corollary

Say ©* is supported on sg groups, and X satisfies RSC. Then for
regularization parameter

XTw
An =2 max H ’ . where = =1— 1
t=1,2,....,T n Vi Vi vt
any solution é;\n satisfies
~ 3 9 v
16x, — 072 < U, (Sg) An, where U, (Sg) = sup l‘\lgllf'
V(L) 0€A(59)\{0}
Some special cases with m = max. group size
@ (1 /ls regularization: Group norm with v = 2
~ sgm  sglogT
183, = 6713 = O(*E= 4 2282,
n
This rate is minimax-optimal. (Raskutti, W. & Yu, 2010)
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Convergence rates for general group Lasso

Corollary

Say ©* is supported on sg groups, and X satisfies RSC. Then for
regularization parameter

XT
An =2 max H w’ . where = =1— 1
t=1,2,....,T n Vi Vi vt
any solution é;\n satisfies
||§>\n — 072 < U, (Sg) An, where U, (Sg) = sup ”ﬁ)gﬁf'
Y(£) 6€A(Sg)\{0}

Some special cases with m = max. group size

Q (1 /l regularization: Group norm with v = oo

2 logT
(Sg;n +Sg og )

16y, — %3 =0

n

Martin Wainwright (UC Berkeley) High-dimensional statistics October, 2010 32 / 39



Example: Low-rank matrices and nuclear norm

@ low-rank matrix ©* € RP**P2 that is exactly (or approximately) low-rank

@ noisy/partial observations of the form
yi = (Xi, ) 4w, i=1,...,n, w; 1iid. noise
@ estimate by solving semi-definite program (SDP):

n min{pi1,p2}
~ . 1 9
6 < argmind 1S (i~ (X ) 40 > 0]

i=1 j=1

el



Example: Low-rank matrices and nuclear norm

@ low-rank matrix ©* € RP**P2 that is exactly (or approximately) low-rank

@ noisy/partial observations of the form
yi = (Xi, ) 4w, i=1,...,n, w; 1iid. noise

estimate by solving semi-definite program (SDP):

n min{pi1,p2}

~ 1

6 € argmin{ £ 3 - (X O)2 40 > ai0)]
i=1 =1

el

@ studied in past work (Fazel, 2001; Srebro et al., 2004; Bach, 2008)

@ observations based on random projection (Recht, Fazel & Parillo, 2007)

@ work on matrix completion (Srebro, 2004; Candes & Recht, 2008; Recht, 2009;

Negahban & W., 2010)

other work on general noisy observation models (Rohde & Tsybakov, 2009;
Negahban & W., 2009)



Rates for (near) low-rank estimation
For parameter g € [0, 1], set of near low-rank matrices:

min{p1,p2}
By(R,) = {67 €RP™ | S [0y(07)]1 < R,}.

j=1

Corollary (Negahban & W., 2009)

Under RSC condition, with reqularization parameter \, > 160( VB A+ ),
we have w.h.p.

= R 0% (1 +p2)\ 2
_ * |12 < q
B-0 < @it (TEE2)




Rates for (near) low-rank estimation
For parameter g € [0, 1], set of near low-rank matrices:

min{p1,p2}
By(R) = {07 € RIVP | 3" |oy(07)]1 < Ry},

Jj=1

Corollary (Negahban & W., 2009)

Under RSC condition, with reqularization parameter \, > 160( VB A+ ),
we have w.h.p.

A R 0% (1 +p2)\ 2
— O*2 < q
B-0 < it (T

@ for a rank r matrix M
1Ml = "o (M) < | > o2(M) = Vr|[M]|r
j=1 j=1

@ solve nuclear norm regularized program with A, > 2| 3" w; X; |



Restricted strong convexity and nuclear norm

observations {y; = (X;, ©*) + w;,i =1,...,n} define observation
operator
X :RPYP2 5 R, [X(A)); = (X, A)).

restricted strong convexity for quadratic loss:
matrices A € RP1*P2 in

X2z > o A for all

K={[lAllr=d}t 0 {A] [Tpe (D)1 < 3[Tp(A) [ + 442 (071}

let’s consider this condition for standard random Gaussian matrices X;



Restricted strong convexity and nuclear norm

@ observations {y; = (X;, ©*) + w;,i =1,...,n} define observation
operator
X :RPYP2 5 R, [X(A)); = (X, A)).

@ restricted strong convexity for quadratic loss: % >y ||A| for all
matrices A € RP1*P2 jn

K={[lAllr=d}t 0 {A] [Tpe (D)1 < 3[Tp(A) [ + 442 (071}

@ let’s consider this condition for standard random Gaussian matrices X;

Proposition (Negahban & W., 2009)

Suppose that X; € RP1*P2 gre i.i.d. random Gaussian matrices. Then

1%A)2 )Hz 1 D1 \/E
N A P1Xp2
IV = 1 lIAllr — (4/ — n) IA;  forall AeR

with probability greater than 1 — ¢; exp(—can).




Results for noisy matrix completion (unrescaled)

MSE versus raw sample size (q = 0.5)
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Results for noisy matrix completion (rescaled)

Frob. norm MSE
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MSE versus rescaled sample size (g = 0.5)
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Summary

@ convergence rates for high-dimensional estimators

» decomposability of regularizer r
» restricted strong convexity of loss functions

@ actual rates determined by:

» noise measured in dual function r*
» subspace constant ¥ in moving from r to error norm || - ||«
» restricted strong convexity constant

@ recovered some known results as corollaries:

» Lasso with hard sparsity
» multivariate group Lasso
» inverse covariance matrix estimation via log-determinant

@ derived some new results on /5 or Frobenius norm:

» models with weak sparsity

» log-linear models with weak/exact sparsity
» low-rank matrix estimation

» other models? other error metrics?
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